Z czego powinna składać się mapa rozwoju produktów opartych na sztucznej inteligencji?

sztuczna-inteligencja-losowanie

Szukasz elementów, które powinny zostać uwzględnione w Twojej mapie drogowej produktu opartej na sztucznej inteligencji? Czy wiesz jak budować i wprowadzać na rynek produkt?

W tym artykule opiszemy, jakie konkretne komponenty muszą wziąć pod uwagę menedżerowie produktu podczas pracy nad produktami opartymi na sztucznej inteligencji.

Spis treści

A. Wprowadzenie

— 1 Czym jest product roadmap (definicja)?

B . Jak wpisać sztuczną inteligencję w roadmap produktu

— 1. Zrozum potrzeby klientów, które sztuczna inteligencja może rozwiązać lepiej niż tradycyjne metody

— 2. Sformułuj hipotezę problemu, który ma znaczenie dla sztucznej inteligencji

— 3. Jak przygotować odpowiedni zestaw danych do zbudowania i wprowadzenia produktu na rynek?

— 4. Bądź świadomy zagrożeń i wyzwań, ale nie pozwól im powstrzymać się przed eksperymentowaniem.

— 5. Nigdy nie przestawaj iterować (usprawniać); w przeciwnym razie twój algorytm nie będzie się ulepszał.

Sztuczna inteligencja (AI) przeniknęła niemal każdą sferę naszego życia. Jest to ukryta siła sugerująca najlepszą ofertę na Amazon i podpowiadająca co oglądać na Netflix lub jak korzystać z laptopa Dell. 

Sztuczna inteligencja to czarodziej, który za kulisami automatyzuje nasze najbardziej ręczne zadania i sprawia, że ​​nasza interakcja z produktami jest przyjemniejsza. Zbudowanie produktu opartego na sztucznej inteligencji wymaga innego podejścia niż budowa produktów, które nie wykorzystują inteligentnych algorytmów.

Mapa drogowa produktu (product roadmap) to dokument strategiczny, graf lub jakakolwiek inna forma dokumentu, który odwzorowuje etapy rozwoju produktu, w tym wejścia i wyjścia, które są niezbędne do zapewnienia przez produkt wartości. 

Głównym celem mapy drogowej produktu jest dopasowanie wizji produktu do celów biznesowych firmy.

Co należy wziąć pod uwagę tworząc lub ulepszając produkt wykorzystujący sztuczną inteligencję

Tworząc lub ulepszając produkt wykorzystujący sztuczną inteligencję, należy wziąć pod uwagę kilka dodatkowych elementów, które należy umieścić w planie działania. Tutaj są:

1. Zrozum potrzeby klientów, które AI może rozwiązać lepiej niż tradycyjne metody

Menedżerowie produktu muszą zawsze najpierw zrozumieć problem (usunąć przyczynę niewygody klienta), który chcą rozwiązać dla klientów. Zacznij od unikania błędu popełnianego przez wiele firm, startupów i zespołów produktowych: nie traktuj sztucznej inteligencji (uczenia maszynowego, sieci neuronowych i data science) jako rozwiązania z definicji. Najpierw przejdź do poznania istoty problemu, który chcesz rozwiązać.

Wszystko zaczyna się od klienta i niedogodności, jaki Twój produkt usunie dla Twojej grupy klientów czy niszy. Sztuczna inteligencja jest tylko tak dobra, jak bardzo może wyeliminować (zautomatyzować) problemy skuteczniej niż klasyczna inżynieria oprogramowania.

Ponieważ produkty oparte na sztucznej inteligencji polegają na podejmowaniu decyzji i dostarczaniu wyników (konwertowanie danych wejściowych na dane wyjściowe szybciej, mądrzej z elementem samo uczenia się), polecam zacząć od zmapowania problemów klientów i przeanalizowania, w jaki sposób proces usuwania niedogodności można zautomatyzować.

Twoi menedżerowie produktu powinni katalogować decyzje, które Twoi klienci muszą wykonać ręcznie (na przykład, aby wyszukać informacji o numerze rejestracyjnym pojazdu ręcznie, proces można zautomatyzować dyktując numer głosowo lub głosowo opisując szukany pojazd).

Poszukiwania i katalogowania nie wykonuj w domu, przeprowadzaj eksperymenty poza biurem i rozmawiaj z klientami, aby dowiedzieć się, jakie niedogodności są najbardziej uciążliwe.

Pomyśl także o decyzjach, których aktualnie nie podejmują Twoi klienci docelowi lub o problemach, których nie dostrzegają użytkownicy końcowi. Te badania doprowadzą Cię do zorientowanego na produkt zrozumienia możliwości sztucznej inteligencji, a szansa ta będzie płynąć bezpośrednio od klientów, a nie od najmądrzejszych inżynierów lub kadry kierowniczej wyższego szczebla. Chodzi mi o to, że Twój produkt od samego początku będzie zorientowany na klienta, a nie na pracowników, menedżerów czy inne osoby z Twojej organizacji.

Sztuczna inteligencja rzeczywiście zautomatyzuje najbardziej powtarzalne zadania i na tym polega jej moc. Dodatkowo, będzie się uczyć i stawać dokładniejsza w miarę rozwiązywania problemów Twoich klientów.

Pamiętaj, że sztuczna inteligencja nie może wszystkiego zautomatyzować. Na przykład, aby przeanalizować wybrany rynek i napisać 130-stronicowy raport, człowiek może to zrobić ręcznie. System sztucznej inteligencji do przeprowadzenia badań rynkowych i stworzenia rozszerzonego raportu rynkowego nie jest odpowiedni. Nie będzie potrafił przeprowadzić badań i wyciągnąć z nich wniosków, ale już napisanie raportu będzie możliwe.

2. Sformułuj hipotezę problemu, który ma znaczenie dla AI

Dla każdego z problemów klienta zidentyfikowanych w poprzednim kroku sformułuj i udokumentuj hipotezę, która będzie testowana. 

Ogólnie rzecz biorąc, twoja hipoteza będzie zawierała następujące elementy:

  1. Zidentyfikowany  problem / dyskomfort  (np. użytkownik aplikacji spędza zbyt dużo czasu na przewijaniu strony z wynikami wyszukiwania)
    • Oczekiwany  efekt  (np. skrócenie czasu potrzebnego na przewijanie). 
  2. Wskaźniki sukcesu  
    • Czas wyszukiwania (np. zrobienie zdjęcie przedmiotu, aby doprecyzować listę wyszukiwania)
  3. Wzrost biznesu, jaki powinien przynieść produkt lub usługa wykorzystująca sztuczną inteligencję  (np. Amazon Brick&Mortar Stores „chcą”, abyś zrobił zdjęcie produktu, aby poznać jego cenę ( mój post na ten temat ). Pomaga to firmie przekonywać użytkowników do wykonywania zdjęć, ale także poszerzać bazę zdjęć, które firma wykorzystuje do trenowania algorytmów sztucznej inteligencji.

Wykorzystuj proces, aby upewnić się, że w mapie rozwoju produktu jest miejsce na sztuczną inteligencję

Proszę przeczytaj dokładnie to zdanie.

Wierzymy, że  [ stworzenie tej funkcji] dla tych klientów/użytkowników końcowych przyniesie  [usunie problem poprzez automatyzację zadania] . Będziemy wiedzieć, że produkt zapewnia wartość  [wskaźniki sukcesu] .

Tak wiem to zdanie brzmi dziwnie, ale w gruncie rzeczy jest bardzo przydatną metodą poszukiwania, czy w Twoim produkcie cyfrowym jest miejsce na wdrożenie sztucznej inteligencji. Jeśli zidentyfikujesz wysiłek jaki klient musi w coś włożyć, aby otrzymać efekt, masz już fazę PAIN (rysunek poniżej)

Następnie trzeba zastanowić się nad wartością jaką produkt ma dostarczyć. W rzeczywistości jest to pytanie o to jaki dyskomfort produkt wyeliminuje. Dopiero teraz jest etap budowania funkcjonalności (Feature). Natomiast wciąż należy odpowiedzieć sobie na pytanie, jaki wzrost biznesu ma przynieść ten produkt. Czy ma to być: akwizycja użytkowników, powrót użytkowników do korzystania z produktu czy może wywołanie efektu sieciowego. Oczywiście jednym z możliwych rezultatów jest wzrost przychodów, revenue.

Rysunek 1 :: Proces poszukiwania miejsca dla sztucznej inteligencji w konstruowaniu roadmapy produktów cyfrowych

3. Jak przygotować odpowiedni zestaw danych do zaoferowania funkcji w produkcie?

Średnio 80% czasu, jaki większość zespołów spędza w projektach sztucznej inteligencji to pozyskiwanie i przygotowywanie danych. W większości przypadków przygotowanie danych oznacza:

  1. Identyfikację danych, które będą wymagane w projekcie (np. możesz indeksować zdjęcia samochodów, aby wytrenować algorytmy rozpoznawania marek samochodów)
  2. Określenie dostępności danych i zdefiniowania z jakich źródeł mogą one pochodzić (np. możesz zbudować strategiczne partnerstwo i pozyskać dane od partnerów)
  3. Profilowanie danych
  4. Integracja danych
  5. Oczyszczanie i uzupełnianie danych
  6. Przygotowanie stosu danych do trenowania algorytmów

Jeśli nie możesz zbudować zestawu danych do uczenia algorytmów, projekt zakończy się niepowodzeniem. Rekomenduję nie uruchamiać projektu, jeśli dane i proces ich przygotowywania nie przeszedł przez wyżej opisane kroki.

Powodem tego jest to, że nie będziesz w stanie zautomatyzować zadania, które wcześniej zdefiniowałeś jako ból / problem trapiący Twojego klienta. 

Na przykład Twój zespół marketingowy poinformuje klienta (przykład z jednego z moich projektów):

„Teraz możesz zrobić zdjęcie odzieży i szybko znaleźć je w naszym sklepie”. Twoja aplikacja oparta na sztucznej inteligencji rozpozna spodnie, dżinsy, piżamy, koszule, spódnice, ale nie rozpozna zegarków i torebek. Jeśli nie masz zestawu danych dla zegarków i torebek, nie możesz ich rozpoznawać — dane wpływają na to, co możesz dostarczyć. To z kolei definiuje skuteczność w konwersji, retencji i monetyzacji.

Produkty lub usługi oparte na sztucznej inteligencji nie mogą być tworzone bez „czystych”, poprawnych i ustrukturyzowanych danych. 

Tutaj przygotowałem trzy najczęstsze wyzwania w uzyskaniu dobrego zestawu danych:

  • Dane są zarządzane gromadzone w wielu formatach i przechowywane w różnych typach baz danych. Trudność polega na braku jednego zunifikowanego do jednego miejsca, z którego można pobierać te dane.
  • Brak kategoryzacji sprawia, że ​​dane nie mają znaczenia dla uczenia maszynowego. Jeśli nie ma wzorców, których algorytm uczenia maszynowego miałby się uczyć z tych danych, nie ma rozwiązania do zbudowania; nazywa się to danymi nieustrukturyzowanymi – stos punktów danych bez wyjaśnienia, co reprezentują lub do czego są dopasowane. 
  • Brakujące lub niekompletne dane, które w niektórych przypadkach nie oferują informacji dostępnych dla wszystkich parametrów (np. znamy wiek osób, ale nie znamy kraju ich pochodzenia we wszystkich przypadkach), podczas gdy w innych wystąpieniach w tym samym zestawie danych brakuje określonych parametrów. Te niespójności skutkują błędnym uczeniem się, co ostatecznie prowadzi do nieudanych rozwiązań lub niespójnych wyników.

Produkty oparte na sztucznej inteligencji wymagają kompletnych i czystych zestawów danych dla właściwego trenowania modeli. Dlatego tak ważne jest, aby opracować obszerny zakres danych potrzebnych do stworzenia takiego portfolio dla konkretnego przypadku biznesowego. Jeśli firma ma gotowy ten zestaw, świetnie, jeśli nie, powinna poświęcić czas na zdefiniowanie, wyczyszczenie i przygotowanie odpowiednich zestawów danych. 

Istnieje wiele źródeł danych, w tym publiczne interfejsy API, partnerstwa strategiczne, czy różne bazy danych, które można kupić. Najlepsze firmy udostępniają produkty, zwykle bezpłatnie, w celu zbierania danych od użytkowników końcowych. Jednym z najlepszych przykładów jest Google Map lub aplikacja Kindle. 

Jeśli chciałbyś zapisać się do naszego newslettera, zapraszam:

.

4. Bądź świadomy zagrożeń i wyzwań, ale nie pozwól im powstrzymać się od eksperymentowania i iteracji

Produkty wykorzystujące sztuczną inteligencję i ich rozwój napotyka na inne wyzwania i przeszkody niż budowa i tworzenie produktów w których sztucznej inteligencji nie ma. 

Aby zrealizować plan działania produktu, musisz zmierzyć się z tymi zagrożeniami:

  • Zwróć uwagę na różne rodzaje nieprawidłowości, które mogą mieć wpływ na Twój model. Oto doskonały zestaw błędów skatalogowanych przez Google.
  • Należy pamiętać, że błędne rekomendacje w interfejsie użytkownika mogą narazić cały projekt na ryzyko. Zawsze upewnij się, że zmiana, którą chcesz wprowadzić, pochodzi od użytkowników, prawdziwych klientów lub społeczności, dla której tworzysz produkt. Powinien to być rozwój zorientowany na klienta, ponieważ każda zmiana może znacznie wpłynąć na skuteczność działania sztucznej inteligencji. Na przykład, jeśli chcesz rozpoznać angielski specyficzny dla wąskiej grupy (np. slang pracowników wież wiertniczych i rafinerii), powinieneś wiedzieć, że zadanie pytania do urządzenia Alexa przez taką osobę może wywołać zupełnie inny wynik. Identycznie jeśli wędkarz zapyta o pogodę, zapyta o nią inaczej aniżeli ktoś kto chce surfować na desce. Większość produktów sztucznej inteligencji upada z powodu nieadekwatnych danych i bardzo niskiej jakości wyników końcowych.
  • Bądź w pełni świadomy wpływu wszelkich zalecanych zmian i zawsze wykorzystuj opinie klientów. Sięgaj do działu skarg i zażaleń, aby uczyć się, co nie działa, co sprawia wyjątkowy trud Twoim użytkownikom.
  • Zbieranie i analizowanie zbyt dużej ilości danych o użytkownikach bez wymiernych korzyści może spowodować, że użytkownik porzuci Twój produkt (wzrost rezygnacji). Zapewnij swoim klientom wartość tak wcześnie, jak to możliwe, zanim poprosisz ich o więcej do zrobienia. Aplikacja Buffer chce, abyś planował coraz więcej kampanii w mediach społecznościowych i wystarczy, że się zalogujesz i podłączysz swój Instagram i Facebook. To już wystarczy Bufferowi, aby analizować Twoją pracę i proponować skuteczne usprawnienia w kampaniach. Pamiętaj, aby poprosić klientów tylko o to, co niezbędne. Następnie musisz zachęcać skutecznymi rekomendacjami a nie prośbą o jeszcze większą ilość danych.
  • Pomaga, jeśli masz odpowiednie środki ostrożności w zakresie bezpieczeństwa i prywatności za każdym razem, gdy Twój model zawiera lub opiera się na danych osobowych. Zwłaszcza w Europie, gdzie RODO jest silne i jego nieprzestrzeganie może skutkować sankcjami dla Twojej firmy.

5. Nigdy nie przestawaj iterować

Gdy Twój zespół wdroży model, kontynuuj iterację i ulepszaj go. Niestety to się nigdy nie kończy. Amazon chce, abyś robił zdjęcia książek w ich fizycznych księgarniach, ponieważ każdy obraz trenuje algorytmy sztucznej inteligencji Amazona. Inżynierowie chcą, abyś „personalizował zakupy” w aplikacji mobilnej Amazon, ponieważ każde zdjęcie czyni ich algorytm mądrzejszym. Amazon stale iteruje. Ty też powinieneś. 

Myślę, że od 60-80% pracy następuje po dostarczeniu pierwszej wersji produktu (modeli) opartego na sztucznej inteligencji do rynku, czyli do klientów. 

Bez klientów nie można sprawić, by algorytmy były mądrzejsze. 

Ta praca obejmuje ulepszanie modelu, a także dodawanie nowych funkcji do modelu w miarę pojawiania się większej ilości danych.

Wniosek

Produkt jest źródłem przychodów lub/i danych dla wielu firm. Bez roadmapy rozwoju opartej o zarządzanie danymi, bez względu na to, jak dojrzały jest produkt, w końcu upadnie.

To sprawia, że ​​mapa drogowa produktu (product roadmap) jest niezastąpionym narzędziem dla każdego zespołu zajmującego się rozwojem produktu. Sztuczna inteligencja daje masowo skalowalne rozwiązania. Czasochłonne w budowaniu produkty, a takimi są bez wątpienia te oparte o sztuczną inteligencję, wymagają jasnych definicji celów opartych na opiniach klientów.

Oprogramowanie AI, które ułatwia pracę menedżerom produktów

narzędzia stolarskie

Ponieważ możliwości sztucznej inteligencji są wprowadzane w nowe produkty i usługi, dobrze jest czasami przejrzeć oprogramowanie AI, które menedżerowie produktów mogą wykorzystać w swojej pracy i znacznie zwiększyć wydajność.

Narzędzia do zarządzania produktami obejmują:

  • oprogramowanie do analizy produktów,
  • narzędzia do projektowania produktów,
  • oprogramowanie do zarządzania produkcją,
  • narzędzia do śledzenia rozwoju produktu,
  • oprogramowanie do zarządzania zespołem.

Z perspektywy wprowadzenia i rozwoju produktu możemy zidentyfikować trzy typy oprogramowania:

  • opinie klientów i eksperymenty 
  • zarządzanie zespołem produktowym 
  • śledzenie i monitorowanie tzw. trakcji, czyli tego jak rozwija się produkt

Sztuczna inteligencja ułatwiła przetwarzanie ogromnej ilości danych i zautomatyzowała pracę menedżerów produktów dzięki wnioskom z tego przetwarzania

Bez zbędnego przedłużania, oto wybrane przeze przykłady narzędzi AI wspierających proces zarządzania produktami. Uważam, że są one przydatne w podnoszeniu poziomu efektywności pracy menedżerów produktów.

Przykłady oprogramowania AI do treningu danych i prototypowania

Tektura papierowa z prototypem oprogramowania i szkicem front-end

Showpad , a konkretnie Showpad Content, to przydatne narzędzie do tworzenia atrakcyjnej prezentacji lub strony docelowej do eksperymentowania z prototypem lub MVP. Firma opracowała również narzędzie analityczne oparte na AI. Może mierzyć iteracje między określoną treścią landing pages a użytkownikami końcowymi, a następnie przedstawiać zalecenia zmian w produkcie, stronie www produktu i komunikacji. Uważam, że jest to interesujące i przydatne narzędzie, jeśli chcesz przetestować propozycję wartości i uzyskać od klientów informacje zwrotne na temat projektowania komunikatów. 

Lead Genius i jego rozwiązanie AI, pomagają budować bazy danych służące pozyskiwaniu i budowaniu wysokiej jakości leadów sprzedażowych. Lead Genius koncentruje się na pomaganiu menedżerom produktu w tworzeniu atrakcyjnych strategii wejścia na rynek, zapewniając wysoką jakość danych o klientach i użytkownikach. Ich oprogramowanie oparte na AI może pomóc w przygotowaniu listy klientów docelowych (z ang. target customers), przeprowadzeniu symulacji dotyczących konwersji tej bazy i wprowadzenia produktów na rynek na bazie tych AI analiz. Menedżerowie produktu mogą monitorować, w jaki sposób kierować klientów do interakcji online, co może być bardzo przydatne w budowaniu strategii produktowych. 

H2O.Ai to fantastyczna platforma (zestaw wielu różnych narzędzi), którą można wykorzystać do trenowania algorytmów i modeli AI. H2O działa na dużych ilościach danych i może szybko pomóc w testowaniu danych, szkoleniu ich i dostarczaniu wielu różnych informacji. Narzędzie może pomóc menedżerom produktu i ich zespołom zaoszczędzić dużo czasu na trenowaniu modeli sztucznej inteligencji. Innymi słowy, zamiast zatrudniać własny zespół i budować od zera (z ang. from scratch) modele AI, H2O wytrenuje je dla Ciebie. Istotnie skraca więc time to market.

Datarobot to kolejna ekscytująca platforma, która pomaga zrobić proste rzeczy. Prześlij swój zbiór danych i oceń wiele modeli, aby zobaczyć, jakie dane wyjściowe możesz uzyskać. Platforma pomaga również budować umowy SLA wokół danych, co zwiększa szansę na wypracowanie odpowiedzialnych oczekiwań we współpracy z klientami.

Jeśli chciałbyś zapisać się do naszego newslettera, zapraszam:

.

Firmy tworzące oprogramowanie AI, które budują narzędzia do automatyzacji zadań i poprawy jakości danych

Zestaw urządzeń automatyzujących zadania w sieci

W naszych projektach dużo pracujemy z obrazami i zdjęciami. Odkryliśmy interesującą firmę CrowdAI . Aby korzystać z CrowdAI, przedstawiciele firmy muszą uruchomić proces onboardingu klienta, więc nie jest to typowy SaaS, jeśli już się ten proces przejdzie software daje duże możliwości. To fascynujące, jak obrazy mogą pomóc w zdobyciu wniosków biznesowych i podejmowaniu lepszych decyzji w biznesie, zarządzaniu kryzysowym itp. Możesz sobie wyobrazić, jak dzięki takim rozwiązaniom można ulepszyć farmy, drogi, mosty, baseny, jeziora. CrowdAI, po prostu „żuje” dla Ciebie zdjęcia i wyciąga z nich nieliczną ilość informacji.

Czytaj także : Jak tworzyć zespół sztucznej inteligencji, który może napędzać rozwój produktów opartych na sztucznej inteligencji?

Cynamon , jedno z naszych ulubionych narzędzi, pomaga usunąć głupie, ręczne zadania i wprowadzić pełną automatyzację w przetwarzaniu dokumentów. Czy masz faktury w różnych formatach, umowy lub notatki odręczne? Cynamon potrafi wyodrębnić kluczowe punkty i pobiera faktury do Twojego systemu ERP, a jeśli jesteś podobny do nas, używasz Apple Pencil, pomaga przenieść pismo odręczne do drukowanego tekstu. 

Anodot , pomaga menedżerom produktów radykalnie poprawić jakość danych. Jeśli masz ogromną ilość danych, możesz użyć narzędzia do znalezienia anomalii. Jeśli używasz Salesforce do pozyskiwania danych i Google Analytics do śledzenia trakcji, to narzędzie może pomóc w odkryciu martwych punktów w zestawach danych, korelacji między różnymi danymi. Problem polega na tym, że kiedy masz niewartościowe punkty danych w dużej puli danych, twoja prognoza staje się nierzetelna i ale Ty o tym nie wiesz. Anodot znajdzie takie miejsca dla Ciebie.

Wybrane chatboty i oprogramowanie AI przykładające się sukcesu działań marketingowych

Humanoid, który jest doskonałym przykładem przyszłych chatbotów

Komponenty Troops.ai o nazwie „For Customer Success” są bardzo pomocne, gdy Twój produkt jest wprowadzany na rynek a Ty od początku chcesz walczyć z churn (utrata klientów) i poprawić onboarding nowych użytkowników. Uważamy, że jest to bardzo przydatne w projektach B2B. Software integruje się również z Salesforce. Jeśli masz zamiar skalować swój produkt, Troops.ai pomoże Ci zmierzyć satysfakcję, co ma kluczowe znaczenie, jeśli jesteś menedżerem produktu skupionym na opiniach klientów (czyli tak jak być powinno).

Niektórzy z naszych klientów rozważają chatboty jako element swojej strategii zarządzania produktem. Zwykle myślą o dwóch aspektach:

  • jak zautomatyzować zadania wykonywane ręcznie (np. odpowiadanie na standardowe pytania klientów)
  • jak uzyskać więcej informacji zwrotnych, a następnie ulepszyć produkty?

Poniżej znajdziesz platformy, które mogą pomóc w projektowaniu czatów, botów i innych sposobów komunikacji automatycznej i opartej na sztucznej inteligencji.

  • Twyla integruje się z SAP, Salesforce, Magento, LiveChat i innymi. Jest to silnik oparty o NLP (Natural Language Processing), który jest zasilany przez CMS. 
  • Acebot.ai – dostosowany do pytań ankietowych. To narzędzie potrafi szybko analizować ankiety, uruchomić je, zbierać opinie od użytkowników. Wszystko to okazuje się bezcenne podczas testowania produktu, propozycji wartości i uruchamiania wersji beta.
  • Dialogflow – pozwólcie, że skopiuję i wkleję ich oryginalny opis, bo uważam, że jest najbardziej wyczerpujący. ” Daj użytkownikom nowe sposoby interakcji z Twoim produktem, budując angażujące głosowe i tekstowe interfejsy konwersacyjne, takie jak aplikacje głosowe i chatboty, oparte na sztucznej inteligencji. Połącz się z użytkownikami w swojej witrynie internetowej, aplikacji mobilnej, Asystent Google, Amazon Alexa, Facebook Messenger oraz w innych popularnych użytkownikach i urządzeniach ”

Twórz i pisz skuteczne wiadomości dzięki AI

Mężczyźni używają oprogramowania do pisania wiadomości na inteligentnym urządzeniu

Jeśli piszesz lub sprawdzasz wiadomości jako menedżer produktu, pokochasz Grammarly i Acrolinx. Pierwszy z nich to nie tylko sprawdzanie gramatyki, ale także sprawdzanie czytelności i estymowanie jak długo użytkownik musi spędzić czasu na przeczytanie danego tekstu. Poza tym narzędzie pomaga sprawdzać plagiat i nielegalne kopiowanie treści. . 

Narzędzie oferuje również wtyczki. Wyobraź sobie, że tworzysz reklamę na Facebooku, aby sprawdzić, jak zareagują użytkownicy. Grammarly instaluje się jako wtyczka, więc nie musisz kopiować i wklejać tekstu reklamy do Grammarly. Oprogramowanie wykorzystuje silniki AWS AI do przetwarzania i kontroli zasad gramatyki. 

Acrolinx jest inny, ponieważ realizuje inne cele. Sprawdza konsekwencje w komunikatach. Co to oznacza?. Jeśli tworzysz wiele landing pages, e-maili marketingowych, broszur, Acrolinx może je wszystkie połknąć i sprawdzić, czy styl pisania jest wszędzie taki sam, czyli konsekwetnty. Na przykład chcesz być zabawną marką, ale raport twoich dla Twoich inwestorów jest bardzo poważny. Acrolinx to zauważy i zaproponuje, aby raport był lżejszy w odbiorze.

Załóżmy, że uruchomiłeś wersję beta, a potem zdajesz sobie sprawę, że klienci powiedzieli: „Twoja aplikacja do ubezpieczenia zdrowotnego jest zbyt poważna i brzmi jak język korporacyjny”. Acrolinx pomaga dopasować styl do oczekiwań klientów. 

Kolejne super ciekawe narzędzie to Narrative Science. Narrative Science buduje historie wokół raportów, dokumentów, notatek i wykresów. Wyobraźmy sobie, że używasz dużej ilości danych do wizualizacji wydajności swojego produktu. To oparte na sztucznej inteligencji narzędzie automatycznie stworzy z tego historię. To oprogramowanie jest niezastąpione, gdy chcesz wyjaśnić swoim wewnętrznym zespołom, co się dzieje z produktem, a jednocześnie nie chcesz, aby Twój zespół ziewał podczas prezentacji.

Rekrutacja i planowanie inteligentnych usług

Cyfrowy podgląd harmonogramu na tablecie

Dwa ostatnie przykłady oprogramowania AI, które chcielibyśmy przedstawić, pomagają w zarządzaniu harmonogramem product managera i szybkim budowaniu lub przebudowywaniu zespołów.

X.Ai zaplanuje twoje spotkania. Wkradnie się do Twoich kalendarzy, obsłuży e-maile, wszystko, co jest potrzebne do zaplanowania dla Ciebie spotkań. Możesz zdefiniować swoje ulubione miejsce na różnego rodzaju spotkania. Na przykład, czy lubisz burzę mózgów w sali konferencyjnej o nazwie Nowy Jork, ale krótkie pogawędki prowadzisz w kawiarniach? Bez problemu x.ai się tego dowie i zautomatyzuje proces rezerwacji miejsca. 

Na koniec Vervoe przygotuje pytania na rozmowę kwalifikacyjną, poprowadzi proces, poda wyniki. Uczy się podczas rozmowy kwalifikacyjnej i miesza dokumenty, pytania, ankiety i filmy, aby sprawdzić różne umiejętności. W końcu otrzymujesz ranking kandydatów. Nie wypróbowaliśmy jeszcze tej platformy, tylko słyszeliśmy, że działa całkiem niesamowicie. Dzięki sztucznej inteligencji Vervoe może zautomatyzować proces i prowadzić rozmowy kwalifikacyjne i rozmowy z wieloma kandydatami jednocześnie. 

Product manager bez studiów i dyplomu, czy to możliwe?

Product manager przede wszystkim zarządza produktem, buduje mapy jego rozwoju i adresuje ryzyka związane z rozwojem produktu. Czy można wykonywać takie zadanie i podjąć taką odpowiedzialność nie mając dyplomu akademickiego?

Uważam, obserwując projekty w których pracuję, że product management to dynamiczna dziedzina, która ma swoje wymaganie, ale niekoniecznie wymaga konkretnego wykształcenia, takiego jak np. MBA. 

Aby odnieść sukces jako product manager, z pewnością musisz posiadać ducha przedsiębiorczości i wysoki poziom inteligencji emocjonalnej. 

Pierwsze oznacza szukanie sposobów na współpracę z klientami i przekładanie jej wyników na to jak działa produkt i usługa. Drugie to umiejętność „wyczuwania” czego oczekują użytkownicy, a czego nie pokazują badania rynków, produktów i konkurencji.

Najlepsi product managerowi są zawsze gotowi przesuwać granice w poszukiwaniu kolejnej wielkiej rzeczy (np. AirBnB w czasach pandemii stworzył wirtualne doświadczenia i podróże, choć wróżono product managerom, że będzie to klęska). 

Kim jest product manager?

Menedżerowie produktu zasadniczo definiują problemy, rozwiązują je i pokazują konsumentom, jak nowe i innowacyjne podejścia poprawi ich życie. Z formalnego punktu widzenia (Pragmatic Marketing)

  • 71% product managerów posiada co najmniej jeden certyfikat zawodowy oprócz swojego stopnia naukowego
  • 42% posiada tytuł magistra lub wyższy

Warto więc zobaczyć,

Czym zajmuje się product manager?

Product manager często nosi wiele kapeluszy. Podstawą zarządzania produktem jest jednak rozwiązywanie problemów. Zawsze chcesz zmaksymalizować wartość dla tych, którzy konsumują Twój produkt i jednocześnie przykładają się do wzrostu Twojej firmy .

Product managerowie pracują nad drobiazgowym zdefiniowaniem zakresu problemu, który rozwiązuje ich produkt i zapewnieniem optymalnego rozwiązania. Ustalenie problemu często wiąże się z dużą ilością badań i łączeniem informacji w oryginalny sposób.

Product managerowie są również odpowiedzialni za decydowanie o tym, co i kiedy tworzyć, budować i wkomponowywać w produkt. Ich zadaniem jest kompetentne kierowanie swoimi zespołami, gdy przekazują swoją wizję, zarządzają rozwojem i wprowadzają produkty na rynek. 

Zarządzanie produktem często wymaga umiejętności technicznych lub przynajmniej umiejętności koordynacji zespołów, które tworzą i projektują technologię. Product managerowie prowadzą często trudne rozmowy (np. dyskusje z zarządem na temat map produktów i priorytetach w doborze funkcjonalności) i kierują procesem rozwoju produktu od początku do końca.

Jeśli chciałbyś zapisać się do naszego newslettera, zapraszam:

.

Jak zostać menedżerem produktu?

Jak wszystko inne, praktyka czyni mistrza. Jeśli brakuje Ci doświadczenia, wystawiaj się na sytuacje, w których możesz je zdobyć. 

Im bardziej doskonalisz swoje umiejętności w zakresie tworzenia i kierowania rozwojem produktów w połączeniu z zarządzaniem projektami, tym bardziej stajesz się atrakcyjny dla potencjalnych pracodawców. Doświadczenie praktyczne, pomoże Ci poruszać się w tej dynamicznej, nowatorskiej dziedzinie bardziej niż dyplom. Dlaczego? Dlatego, że product managera nie da się wykształcić tak jak lekarza czy programistę. W tej pracy musisz mieć „oczy dookoła głowy”, stabilne tętno i chęć do negocjacji, rozmów i rozwiązywania problemów zawsze na inny sposób.

Zatem, aby odkodować to jak najlepsi product managerowie się rozwijają, opisałem poniżej kroki. Opisałem je na bazie swoich osobistych doświadczeń z firm w których pracowałem i dla których prowadziłem projekty:

Krok 1: Ucz się przez działanie — zarządzaj własnymi projektami

Jednym z najskuteczniejszych sposobów zostania product managerem jest działanie tu i teraz. Wybierz i zdefiniuj trapiący Ciebie problem, opracuj, zbuduj i sprzedaj produkt rozwiązujący ten właśnie problem. 

Aby kierować rozwojem produktu, przeprowadź badania rynkowe i sprawdź czy problem, który masz Ty istnieje na rynku. Załóżmy, że chciałbyś usunąć problem tego, że gdy kupisz sobie napój w puszce, musisz „oblizać” wieczko, aby się napić. Najpierw usuń ten problem dla siebie, później dla rynku. Sprawdź po drodze, czy dla innych ten sam dyskomfort ma znaczenie.

Następnie koordynuj rozwój produktu samodzielnie lub z zespołem podczas pracy nad walidacją i wdrażaniem rozwiązań. Podjęcie tego procesu od początku do końca zmusi Cię do myślenia jak product manager i, co może nawet ważniejsze, do zachowywania się tak jak product manager. 

Nawet jeśli Twój produkt ostatecznie się nie sprawdzi, doświadczenie związane z tworzeniem produktu od początku do końca przygotuje Cię na przyszłość jako PM, wystawiając Cię na właściwy proces. Podjęcie tej podróży pozwoli Ci zobaczyć, które strategie działają i będą Ci dobrze służyć, gdy będziesz się zajmował rozwojem innych produktów. 

Product management może przybierać różne formy. Rozpocznij i zbuduj produkt w ramach rozwoju własnej pasji (tzw. side hustle) lub po prostu twórz go jako Twój podstawowy biznes. Cokolwiek jednak zdecydujesz się zrobić, jasno podejdź do problemu i udokumentuj swoją podróż.

Książki i kursy online na temat zarządzania produktami mogą być świetnym miejscem na budowanie kompetencji, ale nie można nauczyć się product managementu bez praktycznego doświadczenia. Pomyślne uruchomienie produktu i zarządzanie nim nauczy Cię ufać swojej intuicji — nieocenionej umiejętności w tej szybko rozwijającej się dziedzinie i pomoże rozwinąć Twój oryginalny styl zarządzania produktami. 

Krok 2: Zostań wolontariuszem i pomocnikiem product managera

Inteligencja i determinacja mają kluczowe znaczenie dla Twojego sukcesu jako product manager, ale firmy na ogół nie są zainteresowane zatrudnianiem product managerów bez doświadczenia. Jak więc sobie z tym poradzić?

Jest kilka sposobów. Pierwszym z nich jest bycie wyjątkowo aktywnym w poszukiwaniu szans na rozwiązanie problemów produktowych. Załóżmy, że jesteś programistą i widzisz, że w opiniach o produkcie użytkownicy piszą „dlaczego nie ma funkcji A”.

Wybór należy do Ciebie. Możesz tę informację zignorować, gdyż jeśli powiesz o tej sprawie szefowi, będziesz miał więcej pracy. Możesz też przeczekać, aż ktoś inny z Twojego zespołu zasygnalizuje ten problem. Możesz też aktywnie podejść do sprawy i przedstawić sposoby rozwiązania tego problemu (to najlepsza strategia).

Zawsze, gdy pojawia się sytuacja i masz szansę poprowadzić proces rozwiązywania problemu w celu rozwiązania konkretnego dylematu, skorzystaj z okazji. Jeśli nie masz uprawnień do opracowania i wdrożenia rozwiązania w swojej obecnej pracy, poproś o pozwolenie na działanie. 

Takie podejście wymaga pływania po niewygodnych wodach i pokazania, że ​​jesteś w stanie poprawić sytuację. Komunikowanie się z kolegami z zespołu, rozwiązywanie problemów i badanie alternatyw oraz ustalanie priorytetów rozwiązań to znak rozpoznawczy dobrego product managera . Wolontariat przy realizacji projektu to jeden z najlepszych sposobów na to, by się do tego przyśpieszyć, pokazując poziom zaawansowania, jaki możesz wnieść do roli PM.

Jeśli nie możesz znaleźć w pracy wystarczających możliwości wolontariatu, spróbuj skontaktować się z raczkującą marką (np. startupem, który dostał pierwsze finansowanie). Zarejestruj się do produktu lub usługi tej firmy, i skontaktuj się z CEO biznesu z sugestiami usprawnień. 

Zostając wolontariuszem, product managerem, zdobędziesz cenne doświadczenie i znajomości. Startup może nawet chcieć zaryzykować zatrudnienie Cię jako kogoś, kto zainwestował w ich koncepcję produktu.

Krok 3: Zbuduj swoją pewność siebie

Osoba w formalnym garniturze pijąca kawę przy brązowym stole

Jak wspomniałem wcześniej, wielu założycieli początkowo podejmuje się pracy jako product manager dla własnego produktu. Przedsiębiorcy odnoszący sukcesy mają wiele takich samych cech i umiejętności, jak product managerowie, więc tradycyjne kształcenie może nawet utrudniać niekonwencjonalne sposoby myślenia, które są niezbędne do rozwoju na nowych obszarach. Nie zrozum mnie źle, nie chcę napisać, że wyższe wykształcenie nie ma znaczenia. Ma i to ogromne. Kształtuje nas jako ludzi. Chcę jednak podkreślić, że nie jest ono wymagane do tego, aby być świetnym product managerem.

Jedyne wykształcenie, którego potrzebujesz, to takie, które przygotuje Cię do pełnienia funkcji product managera. Mam tutaj na myśli kierunkowe kursy, certyfikaty. Dla przykładu możesz chcieć pozyskać formalne przygotowanie w zakresie budowania map walidacji produktu. Super. Pamiętaj jednak, że jeśli zatrudnisz się jako wolontariusz product manager i tak się tego nauczysz. 

Innymi słowy, możesz zdobyć ten zestaw umiejętności, kontynuując rozwiązywanie problemów w swojej organizacji lub czyimś start-upie. Oczekuj od siebie gotowości, do podejmowania bardziej wymagających i złożonych zadań, aby pokazać, że jesteś w stanie rozszerzyć wiedzę, aby wypełnić rolę i poradzić sobie z tym, co przyniesie rozwój produktu i oczekiwania użytkowników. 

Udokumentuj swój proces, aby zbudować portfolio doświadczeń w zakresie product management. Nie unikaj pracy, do której jeszcze nie jesteś przygotowany. Ufaj, że sobie z tym poradzisz; następnie pokaż się i spraw, aby działało to tak, jak działać powinno. 

Udowodnienie siebie innym jest tak samo ważne, jak udowodnienie sobie swoich zdolności. Ponieważ zarządzanie produktem jest tak dynamiczną dziedziną, często trzeba sobie ufać, polegając na intuicji.

Krok 4: Aplikuj na stanowisko menedżera produktu

Teraz zatrudniam znak na zewnątrz w słoneczny dzień

Wolontariat przy rozwiązywaniu problemów o coraz większej złożoności tworzy zasób pracy i doświadczenia, z których możesz czerpać, gdy ubiegasz się o stanowisko product manager. Jeśli przeszedłeś poprzednie kroki, jesteś gotów do startu.

Niezależnie od tego, czy planujesz przejście w ramach swojej obecnej firmy, czy szukasz pracy w innej firmie, skorzystasz z dotychczasowych osiągnięć. 

Umiejętność mówienia o swoim doświadczeniu i tym, co udało Ci się osiągnąć, pomoże Ci znaleźć pracę. Podkreśl pasję i pracowitość, jaką wykazałeś w rozwiązywaniu każdego problemu, który pozwolono Ci rozwiązać.

Najlepiej, jeśli zdobyłeś zaufanie i podziw osób, z którymi współpracowałeś wewnątrz swojej organizacji. To świadczy o Twojej zdolności do przewodzenia, komunikowania się i koordynowania procesu rozwiązywania problemów z udziałem innych stron.

Te doświadczenia dają ci przydatną perspektywę, ale są tylko tak cenne, jak jesteś w stanie zmierzyć, określić ilościowo i przedstawić kluczowe wyniki, które były możliwe dzięki Twojemu udziałowi.  

Jakich umiejętności potrzebujesz, aby zostać product managerem?

Aby zostać skutecznym product managerem, musisz sprawnie przechodzić przez każdą fazę zarządzania produktem. Powinieneś być biegły w rozwiązywaniu problemów z produktem pod każdym kątem. Najlepsi product managerowie mają również wysoki poziom inteligencji emocjonalnej, co pozwala im nawiązać kontakt z klientami i nawiązać kontakt z ich zespołami programistycznymi. Wyczuwanie spraw niezbadanych i niezmierzonych to ważna umiejętność. Da się ją zbudować? Myślę, że tak.

Umiejętność 1 – Samoświadomość

Dobry product manager musi zawsze pozostać obiektywny. Posiadanie silnego poczucia samoświadomości ostatecznie chroni produkt i zapewnia konsumentowi najlepsze możliwe doświadczenia. 

Product managerowie są często superużytkownikami swoich produktów – w końcu product manager jest w gruncie rzeczy mistrzem produktu, więc bez wątpienia będzie miał zdanie na temat kierunku, w jakim powinien podążać rozwój produktu. Mimo to, celem jest satysfakcja użytkownika, a nie karmienie ego produkt managera. Usunięcie osobistych preferencji jest niezbędne.

Medytacja, refleksja nad swoimi motywacjami i staranne analizowanie własnych motywacji uchronią Cię przed brakiem obiektywizmu i pozwolą wzmacniać empatyczne rozumienie rzeczywistość w jakiej osadzasz produkt.

Umiejętność 2 – Zarządzanie relacjami

Product manager jest odpowiedzialny za wiele etapów rozwoju produktu. Na każdym kroku PM musi inspirować do inwestycji w produkt i do swojej wizji. Skuteczne zarządzanie relacjami z projektantami, inżynierami i innymi wewnętrznymi interesariuszami usprawnia proces rozwoju i może mieć duże znaczenie dla szybkiego pokonywania przeszkód, takich jak uzyskanie dodatkowego finansowania lub wdrożenie szybkiej zmiany w produkcie.

Niezbędne jest również tworzenie autentycznych i wiarygodnych relacji z użytkownikami produktów. Wspieranie solidnych i integracyjnych relacji z bazą klientów przyniesie bardziej efektywne produkty i przygotuje grunt pod trwałe zaangażowanie w przyszłości.

Umiejętność 3 – Wiedza techniczna

Poziom umiejętności technicznych wymaganych do zarządzania produktem będzie w dużej mierze zależał od rodzaju produktu (inny będzie przy produkcie typy urządzenie medyczne a inny przy produkcie typu aplikacja dla randkowania). 

Chociaż możesz nie potrzebować umiejętności pisania kodu, aby na przykład samodzielnie zaprojektować aplikację, niezbędne jest posiadanie wystarczającej wiedzy technicznej, aby przekazać swojemu projektantowi to, czego chcesz i dokładnie omawiać potrzeby klientów.

Najważniejszym zestawem umiejętności product managera jest jednak opanowanie podstawowych kompetencji. Wiedząc, jak skutecznie badać problemy, szukać rozwiązań i komunikować się z zespołem, możesz pokonać wiele przeszkód związanych z brakiem przygotowania technicznego.

Umiejętność 4 – Przywództwo i służba w pracy product managera

Odnoszący sukcesy product managerowie wiedzą, jak współpracować z ludźmi, aby wyrazić wizję, a następnie przekonać ludzi, aby ją wspólnie realizowali.

Relacje z klientami zapewnią, że produkt będzie odpowiadał ich potrzebom, a doskonały product manager może dotrzeć do sedna tego co jest najistotniejsze w pracy nad produktem. 

Ugruntowanie pozycji lidera, który jest gotowy do podejmowania trudnych wyzwań, zachowania obiektywizmy leży w służbie i odpowiedzialności. W gruncie rzeczy produkt służy jakiejś grupie ludzi, ma być wsparciem i ulepszeniem życia.

Product manager jako lider rozwiązań, ich budowy i ulepszania, ma odpowiedzialność w służbie klientom i swojej firmie. Wiele od tego zależy, zarówno sukces produktu, jaki i sukces firmy. Podejmujesz wyzwanie?